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About these notes

This is a personal notebook that I use to keep my notes on category theory. I mostly use Coecke
(2008); Coecke and Paquette (2009); Awodey (2010) as main references for the basic contents. These
notes” purpose is to understand how quantum mechanics is formulated in a category-theoretical
language (Heunen and Vicary, 2019), and, in particular, how the Choi-Jamiotkowski isomorphism
looks like in this framework.
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1 Motivation

From my perspective, category theory is a fascinating topic in and of itself: it allows us to make
statements that hold true in different mathematical fields without the need to commit to the specific
structures of one of them. More remarkable than that is the fact that we can formulate quantum theory
in a category-theoretical language (Heunen and Vicary, 2019). Since quantum theory is a particular
kind of a generalized probabilistic theory (GPT), that means we can also describe GPTs within this
framework and doing so would help me get a better understanding of how one could formulate a
Choi-Jamiotkowski-esque isomorphism in GPTs without resorting to purification (Chiribella et al.,
2010). With that in mind and without further ado, let us embark on our category studies.

2 Categories

Definition 1.1: Category

A category C consists of
1. A family of objects: A, B, C, ...

2. For any two objects A and B, a set of arrows (also called morphisms) C(A, B). For each
arrow T € C(A, B), we write itas A - B.

3. For any objects A,B and C, a composition rule
o:C(A,B) x C(B,C) — C(A,C), (f,g) — gof, such that
4. Forany f € C(A,B),g € C(B, C) and h € C(C, D) the composition is associative:
ho(gof)=(hog)of;

5. For any object A corresponds an arrow 15 € C(A, A), called the identity arrow and it
satisfies
f=folpa=1gof
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for any f € C(A, B).
By a long shot, that is the most important definition in this entire text. In order to get a better
picture of what a category is, a few examples might help.

Example 1.1: Sets

Take the class of all sets as our family of objects, consider the functions between sets as our

arrows and let o be the ordinary composition rule for functions. For each set A, define A RLNYY
to be the identity map on A, i.e. 1o = ida. These data constitute the category of sets, which is
written as Sets.

Example 1.2: Concrete categories

* The category Fd Vectk consists of

1. Finite-dimensional vector spaces over K as objects;
2. Linear maps between vector spaces as arrows;
3. Ordinary composition of linear maps as o;

4. For each object V, the identity map idy as 1y.
¢ The category Pos consists of

1. Partially ordered sets as objects;
2. Monotone maps as arrows, i.e. a < a’ = f(a) < f(a’);

3. Ordinary composition of functions and identity maps as o and 14, respectively.
¢ The category Rel consists of

1. Sets A, B, C, ... as objects;

2. Relations R C A x B as morphisms;

3. A composition rule that maps A X Band B > C into the relation
{(a,c) e AxC|3dbeB:(a,b)eR,(b,c) e S}

4. Identity morphisms 1o ={(a,a) € A x A|a € A} for every A € ©O6j(Rel).

A more physically inclined example of category is
Example 1.3: Physical Processes

The category PhysProc consists of
1. All physical systems A, B, C, ... as objects;

2. All physical processes which take a physical system A into another physical system B as
morphisms A — B, and

3. Sequential composition of physical processes as o, and the process that leaves system A
invariant as 1 4.

If we want to construct a category whose objects are categories themselves, then we need to tell

what are the arrows C = D that take a category C to another category D. For our purposes, the
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notion of functor originates from this necessity.
Definition 1.2: Functor

Let C and D be categories and denote the family of their objects by ©6,(C) and ©6;(D),
respectively. A functor F: C — D consists of

1. A mapping
F:06/(C) = ©O64(D), A — F(A) and

2. Forany A, B, C € ©6,(C), a mapping
F: C(A,B) — D(F(A),F(B)), f — F(f)

that preserves identites and compositions.

In terms of diagrams, functors behave as follows:

A—"' B F(A) ——— F(B)
gof ‘/9 F(gof) F9)

C F(C)

C F D

Functor composition works as expected, thatis, if F: C —+ D and G : D — E are functors, then we
define the functor G o F: C — E via the maps that define Fand G, i.e

A € O6/(C) — (GoF)(A) = G(F(A)) € O6/(E), and

f e C(A,B) — (GoF)(f) = G(F(f)) € E(G(F(A)), G(F(B))).

It is fairly easy to show that the functor composition as defined above is associative, and preserves
morphisms compositions and identities. Furthermore, for each category C, one can construct an iden-
tity functor 1c. From all that, we have that the collection of all categories and all functors constitutes
a category which we denote by Cat'.

Groups

Due to Noether’s theorem (be its classical version or its quantum-mechanical one), we know
that groups play a fundamental role in physics. Hence, it seems like a very basic request to have
a category-theoretical description of groups if we want to talk about symmetries in quantum mech-
anical systems in a category-theoretical fashion. In order to do this, we first have to introduce the
notion of a monoid.

Definition 1.3: Monoid

A monoid is a set M equipped with a binary relation - : M x M. — M that is associative and
admits a unit, i.e. for all x,y,z € M

x-(y-z)=(x-y) -z

1 did not mention the composition rule nor the identity, but they should be fairly obvious at this point.
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and there is an (unique) element 1 € M such that

A simple example of a monoid is the set of arrows from A to A, denoted by Homc¢ (A, A), where A
is an object of a category C. Besides, given that monoid homomorphisms preserve the monoid struc-
ture, we can construct the category Mon whose objects are monoids and whose arrows are monoid
homomorphisms. What is more interesting is that we can interpret a monoid as a category itself, as it
is illustrated in the following example.

Example 1.4: Monoids as categories

If M is a monoid, we can identify it with a category M that has a single object *, whose morph-
isms consists are arrows * — %, where m € M. The composition between arrows is given by

the monoid product - and the identity = 1% « is associated to the unit element 1 € M.

Now, recall that a group G is just a monoid (in the sense of definition 1.3) such that every g € G
admits an (unique) inverse g~ € G. So, at the category theory level, we would expect groups to
the monoids (in the sense of example 1.4) whose arrows, in a sense, also have inverses. This is made
precisely clear through the following definition.

Definition 1.4: Isomorphism

Let C be a category. Two objects A, B € ©6,(C) are isomorphic if there are morphisms A 5B

and B 2 A such that
gof=1a andfog=1z.

In this case, f is called an isomorphism and g = f~! is called the inverse of f.

Example 1.5: Groups as categories

Putting together example 1.4 and definition 1.4, we conclude that a group G is a category with
one object and whose morphisms are all isomorphisms.

3 Building new categories

Now that it is clear what a category is, we can construct new ones. Let us progressively walk from
very simple and intuitive examples towards somewhat more elaborate ones.

Example 1.6: Product Category

Given two categories C and D, the product category C x D has consists of
1. Objects of the form (A, B) where A € ©6(C) and B € ©O6;(D)

2. Morphisms of the form

(A,B) — 9 (A7 BY)

where f € C(A,A’) and g € D(B,B’)



3. Building new categories

3. A composition rule o defined componentwise using the composition rules from C and
D, e,
(f',g") o (f,g) = (f'of,g" 0 g).

4. A unit morphism 14 g) = (1a, 1) for each object (A, B).

I like to think that the product category is a generalisation of the Cartesian product between
sets.

Exercise 1.1. Construct two projection functors in C x D.

Example 1.7: Dual Category

Given a category C, we construct its dual (or opposite) category, denoted by C°P, by setting
1. Its objects as the same ones from C,

2. Its morphisms are morphisms in C, but with interchanged domain and codomain. Illus-
tratively, a morphism

£*

in C°? is a morphism

A— 4B

Ve

in C. Objects in C°P are written with a superscript so that they are not mistaken
by objects in the original category. In the first diagram above, we would write f* €
C°P(A*,B*).

3. The composition rule is f* o g* = (g o f)*. It can be represented by flipping the arrows in
the original category, a diagram

A—1 A+

(=]

o

8
N ™

B
g in C, means . ]g* in C°P.
f*og
C

4. To each object A*, the identity is 1o~ = (1a)*.

Example 1.8: Slice Category

Let C be a category and A € ©6(C). The slice category of C over B consists of

1. All morphisms f such that cod(f) = B as objects,

2. Given two objects A L BandA’ 55 B,a morphism between then is a morphism A 2 A’
such that the following diagram commutes:
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3. Given morphisms g from A 5 BtoC S Bandhfrom C 5 BtoA’ 5 B, their
composition is the morphism h o g such that the following diagram commutes:

A 9 C h A’

4. To each object A 15 B, the associated identity morphism is A 224, A because it makes the
appropriate diagrams commute (AFAIU).

4 Universal Properties

In this section, we present three elementary examples of what is known as “universal property”.
AsTunderstand it, an universal property tells us how to single out a specific object? within a category
by stating what are the unique properties that define such object. In the case of free monoids, as we
will see, given a set X, the free monoid over X is the monoid M(X) such that for any monoid N and
any function f : X — |N|, there exists an unique monoid homomorphism f : M(X) — N such that the
following diagram commutes:

IM(X)| IN|

where [M(X)| and |N| are the underlying sets of the respective monoids and i : X — |[M(X)] is the
inclusion map.
Tensor Product of Vector Spaces

This first example is of utmost importance to everyone who wishes to study quantum theory. Let
Vi1, V, and W be real vector spaces and consider a bilinear map f : V; x Vo, — W. The core idea
behind what is a tensor product is to find a real vector space V such that

1. We can insert V; x V; into V by means of an inclusionmap i: Vi x Vo — V and

2. We can define an unique linear map f : V — W such that the following diagram commutes:

2Up to isomorphism!!
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\%

f linear

V1 XVQ w

f bilinear

Let us express this idea in a more categorical fashion. First, fix the vector spaces V; and V, (we are
interested in constructing their tensor product). We define the category BI(V; x V) by saying that

1. Its objects are bilinear maps Vi x Vo — x (this symbolises their codomain is any real vector
space),

2. For any two objects f : V4 x Vo = Wand ' : V4 x Vo, — W/, which we will denote by (f, W)

and (f’, W’), respectively, a morphism (f, W) L (f',W') is a linear map h : W — W' such that
the following diagram commutes:

% h w'
\ /

V1 XV2

3. Given morphisms (f, W) L (g,U) and (g, U) LN (f', W'}, their composition is the morphism

(f,W) hoh, (f', W’) such that the following diagram commutes

w h u n w’

V1 X VQ

4. The identity morphism associated to (f, W) is the identity map idw : W — W.

Now, the conditions 1) and 2) above tell us what are the desirable characteristics that the tensor
product V should possess; however, we do not want them to hold only for some particular W. That
is why we needed to define BI(V; x V3). Hence, in categorical terms we have the following definition:

Definition 1.5: Universal Property of Tensor Product of Vector Spaces

Let V7 and V;, be real vectors spaces. The tensor product of V; and V5 is the object (i, V1 ®Vs) €
©6(B1(Vy x Vz)) such that for any object (f, W) € ©O6;(BL(V; x V2)), there exists a unique
morphism f: (1, V; ® Vo) — (f, W).

In these terms, the tensor product of vectors spaces is some object in ©6/(B1(V; x V3)) from which
arrows depart from. More formally, we say that (i, V1 ® V2) is an initial object.
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Definition 1.6: Initial Object

Let C be a category. We say an object 0 € ©6(C) is initial if for any object C € ©6(C) there is
a unique morphism
0—C.

For the sake of completeness, we also have the notion of terminal objects.

Definition 1.7: Terminal Object

Let C be a category. We say an object 1 € ©6(C) is terminal if for any object C € ©6(C) there
is a unique morphism
C—1

Now, does such an object in fact exists? We only gave a definition that characterizes the tensor
product, but it could be that there is no such (i, V; ® V). It would be somewhat lengthy to construct
such Vi ® V,, but I am sure one can find some math book, YouTube lecture, lecture notes or even a
Math Stack Exchange post showing how it is done. I myself tried to do this

Exercise 1.2. Prove that if such (i, V1 ® Va) exists, then it is unique up to isomorphism.

Exercise 1.3. More generally, prove that initial and terminal objects are unique up to isomorphism.

Free Monoids

If X is a set, a finite sequence of elements of X is a map f : N — X, where N C N is finite. We
denote a finite sequence f on X by a string x1xs . .. xn, where n € N is the cardinality of N. Let

IMX)| ={x1x2...xn: meN;x; €X,i=1,2...,n}

be the set of all such finite sequences on X. We can turn [M(X)| into a monoid (which we denote by
M(X)) by setting that the composition of two finite sequences x; ...xn and y; ... Ym is the sequence
Zi...ZnZn41Zn+m, Where z; = x; for 1 < i < nand zn44 = y; for 1 < i < m. Clearly, there is an
inclusion map i : X — |[M(X)|, which takes x € X to its obvious finite sequence.

Exercise 1.4. Show that the monoid M(X) as constructed above satisfies the following universal property: for
any monoid N and any function f : X — [N|, there exists an unique monoid homomorphism f : M(X) — N
such that the following diagram commutes:

/7l
IM(X)| IN|

where [M(X)| and IN| are the underlying sets of the respective monoids and i : X — |M(X)| is the inclusion
map.

Free Categories
5 Products
6 Duality

7 Natural Transformations
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