
LECTURE 1

Tensors: Universal Properties and Multilinear Maps

1.1 Tensor Product of Vector Spaces

A question that popped up once in a while during my bachelor years was “what is a tensor?”. Some
colleagues would jokingly answer that “a tensor is something that transforms as a tensor”. Ok, this
kind of answer did not clarify a single thing to me back then. It was not until I enrolled in a course
on group theory for physicists that a proper answer was given to me (though I did not understand it
the first few times). If you too do not know what a tensor is, here is a brief and rough explanation:

Given a bilinear map φ : V1 × V2 →W between real vector spaces, the tensor product V1 ⊗ V2 is the unique
real vector space such that there exists a linear map φ̃ : V1 ⊗ V2 →W that is compatible with φ. A tensor is

nothing more than an element of this new vector space.

There are a few things lacking in the explanation above – sure – but it already clarifies something:
tensors are elements of a vector space that satisfies a very important property, i.e., it is the vector space
which “linearises” bilinear maps from V1 × V2 to any other vector space W. The remainder of this
appendix aims to make these ideas more precise. I will try to proceed as carefully as possible during
the construction of the tensor product, but there can be some faults on my reasoning, since I am not a
mathematician.

One last thing: many of the proofs in this text are in Lee (2012). I have omitted some of them as a
way to maintain this presentation as tight as I could, but if you would like to read them yourself, go
for it .

Definition 1.1. Let X be a set. The freely generated vector space by X is defined as the set

F(X)
.
= {f : X→ R| supp f is finite},

where supp f denotes the set of values x ∈ X such that f(x) ̸= 0.

One could (rightfully) argue that F(X) is not yet a real vector space. Though that is true, one does
not need to be that imaginative to see that F(X) becomes a real vector space when we define addition
and scalar multiplication just as we do with functions.

The set X is a basis for its freely generated vector space because any element of F(X) has the
following decomposition:

f =

r∑
p=1

f(ap)ap,

for some r ∈ N, where the first ap ∈ supp f and the second ap, seen as an element of F(X), denotes
the function that has as support the set {ap}.

Proposition 1.1. Let X be a set, F(X) be its freely generated vector space, and W be a real vector space. If
T : X→W is a function, then there exists a unique linear map T̃ : F(X) →W for which the diagram below is
commutative,
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1.1. Tensor Product of Vector Spaces

X W

F(X)

T

ι
T̃

where ι : X→ F(X) denotes the inclusion map defined as ι(x) = x for all x ∈ X.

Proof. One just needs to define the map T̃ : F(X) →W by

T̃(f)
.
=

r∑
p=1

f(ap)T(ap), ∀f ∈ F(X),

and be a bit careful when proving that T̃(f+g) = T̃(f)+ T̃(g). To prove uniqueness, letM : F(X) →W
be another linear map that satisfies the diagram above. Then, for an arbitrary f ∈ F(X):

M(f) =
∑

a∈supp f

f(a)M(a) and T(a) = (M ◦ ι)(a) =M(a)

=⇒ M(f) =
∑

a∈supp f

f(a)T(a)

=⇒ M(f) = T̃(f).

Since fwas arbitrary, one deduces thatM = T̃ . ■

The previous proposition was just a restatement of a result usually seen in linear algebra courses:
a linear transformation between vector spaces is fully determined by the way it acts on a basis.

Now, let us recall our previous case: we had a set X = V1 × V2 and a function φ : V1 × V2 → W
which was assumed bilinear if we had treated the set as a vector space. Then, we could be mislead
by proposition 1.1 and treat F(V1 × V2) as the tensor product V1 ⊗ V2, after all, for any function (in
particular bilinear ones), the proposition gives us a unique linear map from a new vector space to our
target space W. However, if φ̃ is linear map, it still is not compatible with the bilinearity of φ, for
example:

φ(v1 + u1, v2) = φ(v1, v2) +φ(u1, v2)

for any v1,u1 ∈ V1 and v2 ∈ V2, but in general

φ̃((v1 + u1, v2)) ̸= φ̃((v1, v2)) + φ̃((u1, v2)).

If this looks a bit confusing, remember that in the LHS above (v1 + u1, v2) is the function that is
zero everywhere but in (v1 + u1, v2), while in the RHS (v1, v2) and (u1, v2) are functions defined
analogously as the function (v1 + u1, v2). Unless v2 = 0, these functions have little to do with each
other, and so φ̃ has little to no right to mimic the bilinearity of φ. In order to fix this problem (and
similar ones), first we have to consider the vector subspace R ⊆ F(V1 × V2) that consists of linear
combinations of the following elements:

1. (v1 + u1, v2) − (v1, v2) − (u1, v2),

2. (v1, v2 + u2) − (v1, v2) − (v1,u2),

3. α(v1, v2) − (αv1, v2),

4. α(v1, v2) − (v1,αv2),
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1.1. Tensor Product of Vector Spaces

for all v1,u1 ∈ V1, v2,u2 ∈ V2 and α ∈ R.
Second, recall that given a vector space V and a subspace S ⊆ V , one can always construct a

new vector space V/S, called the quotient space, by introducing the equivalence relation v ∼ u ⇐⇒
v− u ∈ S for u, v ∈ V . In our specific scenario, we introduce the following notation:

F(V1 × V2)/R
.
= V1 ⊗ V2.

Now, the elements of this vector space are equivalence classes of elements of F(V1 × V2) under ∼.
By construction of the quotient space as a vector space, it follows, for example, that:

[(v1 + u1, v2)] = [(v1, v2)] + [(u1, v2)],

because (v1 + u1, v2) − (v1, v2) − (u1, v2) clearly belongs to R. If we introduce the notation [(v, v ′)]
.
=

v⊗ v ′, then the equality above translates to

(v1 + u1)⊗ v2 = v1 ⊗ v2 + u1 ⊗ v2,

which is a bit more familiar to someone who has been previously exposed to tensors. Similarly, one
can also show that:

1. v1 ⊗ (v2 + u2) = v1 ⊗ v2 + v1 ⊗ u2,

2. α(v1 ⊗ v2) = (αv1)⊗ v2,

3. α(v1 ⊗ v2) = v1 ⊗ (αv2).

Third, define i : V1 × V2 → V1 ⊗ V2 as i(v1, v2)
.
= v1 ⊗ v2. It is not that hard to show that it is a

bilinear map. After all these steps, the story so far can be described by the following diagram:

F(V1 × V2)

V1 × V2 W

V1 ⊗ V2.

φ̃
ι

i

φ

We are missing one arrow! In order to obtain this arrow, we make use of the following lemma,
whose proof we momentarily skip for sake of text continuity:

Lemma 1.1. Let T : U → W be a linear map between vector spaces and R ⊆ U a subspace satisfying
R ⊆ ker T . Denote the canonical projection map u 7→ [u] by π. There exists a unique linear transformation
T̃ : U/R→W such that the following diagram

U W

U/R

T

π
T̃

commutes.
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1.1. Tensor Product of Vector Spaces

By virtue of the this lemma, if we set U = F(V1 × V2) and T = φ̃, then there exists a unique linear
map T̃ ≡ φ⊗ : V1 ⊗ V2 →W such that

F(V1 × V2)

V1 × V2 W

V1 ⊗ V2.

∃!φ̃

π

ι

i

φ

∃!φ⊗

In other words, we have essentially proven the existence part of the following theorem:

Theorem 1.1. Let V1,V2 be real vector spaces. There exists a unique vector space V1 ⊗ V2 and a unique
bilinear map i : V1 × V2 → V1 ⊗ V2 with the following universal property:

V1 × V2 ∀W

V1 ⊗ V2

∀ bilinear φ

i ∃! linear φ⊗

Proof of theorem 1.1. All that is left is to prove uniqueness. Assume there’s another vector spaceM and
other bilinear map m : V1 × V2 →M that also satisfies the diagram above. This means that for φ = i
and W = V1 ⊗ V2, there exists a unique linear map i ′ : M → V1 ⊗ V2 such that i ′ ◦m = i. Similarly,
since (i,V1 ⊗V2) has the same universal property, there exists a unique linear mapm ′ : V1 ⊗V2 →M
such thatm ′ ◦ i = m. Pictorially, we have the following commutative diagram:

V1 ⊗ V2

V1 × V2 M

V1 ⊗ V2.

m′i

i

m

i′

This means that i ′ ◦m ′ : V1 ⊗ V2 → V1 ⊗ V2 is a linear map such that (i ′ ◦m ′) ◦ i = i. By making
use of the universal property of the pair (i,V1 ⊗ V2) to itself, it follows that i ′ ◦m ′ = 1V1⊗V2

, so m ′

has a left inverse, which means that it is an injective map. By similar reasoning, m ′ ◦ i ′ = 1M, so m ′

has a right inverse, which means it is a surjective map. Since the left and right inverses are the same
andm ′ is linear, we have thatm ′ is a vector space isomorphism. ■

Now, all that is left is to prove the lemma aforementioned.

Proof of lemma 1.1. Define the map T̃ : U/R →W as

T̃([u])
.
= T(u).
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If T̃ is well-defined, then, first of all, T̃ is a linear map that obeys the commutative diagram. To show
that it is indeed well-defined, let u ′ ∈ [u]:

u ′ ∈ [u] ⇐⇒ u− u ′ ∈ R ⊆ ker T

=⇒ T(u− u ′) = 0W

=⇒ T(u) = T(u ′)

=⇒ T̃([u]) = T̃([u ′]).

Hence, T̃ does not depend on the representative of the equivalence class. To prove uniqueness, let
M : U/R → W be another linear map that obeys the diagram. Then, for any [u], M([u]) = T(u)

.
=

T̃([u]). Thus,M = T̃ . ■

All work done so far can easily be generalised to the case where we have k ∈ N real vector spaces
V1, . . . ,Vk and a multilinear map φ : V1 × . . .× Vk →W. I will just state the theorem, but the idea of
the proof is entirely analogous to what we did to the case k = 2.

Theorem 1.2. Let V1, . . .Vk, and W be real vector spaces, k ∈ N. There exists a unique vector space
V1 ⊗ . . . ⊗ Vk and a unique multilinear map φ⊗ : V1 ⊗ . . . ⊗ . . .Vk → W with the following universal
property:

V1 × . . .× Vk ∀W

V1 ⊗ . . .⊗ Vk.

∀ multilinear φ

i ∃! linear φ⊗

So far so good. Now, it is time to verify how these objects look like when we introduce ordered
basis in each of the vector spaces V1, . . . ,Vk. For simplicity, from now on all vector spaces under
consideration will be finite dimensional.

Proposition 1.2 (A basis for V1 ⊗ . . .⊗Vk). Let V1, . . . ,Vk be real vector spaces and for each 1 ⩽ j ⩽ k, let
(e

(j)
1 , . . . , e

(j)
nj

) be an ordered basis for the nj-dimensional vector space Vj. The set

B = {e
(1)
i1

⊗ . . .⊗ e(k)ik
: i1 ∈ [n1], . . . , ik ∈ [nk]}

defines a basis in V1 ⊗ . . .⊗ Vk.

Proof. It is evident that span(B) ⊆ V1⊗ . . .⊗Vk. To show the opposite inclusion, consider a tensor of
the form v1 ⊗ . . . ⊗ vk. By expanding each vj in terms of the ordered basis chosen in Vj, it is evident
that v1⊗ . . .⊗vk ∈ span(B). Since any tensor in V1⊗ . . .⊗Vk is a linear combination of elements like
v1 ⊗ . . .⊗ vk, it is clear that the converse inclusion must also hold. Hence, V1 ⊗ . . .⊗ Vk = span(B).

Now, we must prove linear independence. To avoid typing sums, we adopt the Einstein summa-
tion convention (repeated upper and lower indices are being summed).

Let αi1...ik ∈ R be coefficients such that

αi1...ike
(1)
i1

⊗ . . .⊗ e(k)ik
= 0.

Now, for each k−uple (m1, . . . ,mk we construct a multilinear map ψm1,...,mk : V1 × . . .×Vk → R as

ψm1...mk(v1, . . . , vk)
.
= em1

(1) (v1) . . . e
mk

(k) (vk),
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1.2. Multilinear Maps and (p,q)-tensors

where eij(j) represents an element of the dual basis to e(j)ij
. By virtue of theorem 1.2, there is a linear

map ψ̃m1...mK : V1 ⊗ . . .⊗ Vk → R that ψ̃m1,...,mk ◦ i = ψm1...mk . Hence, by virtue of each such map:

ψ̃m1...mk(αi1...ike
(1)
i1

⊗ . . .⊗ e(k)ik
) = αi1...ikψm1...mk(e

(1)
i1

, . . . , e
(k)
ik

)

.
= αi1...ikem1

(1) (e
(1)
i1

) . . . emk

(k) (e
(k)ik)

= αi1...ikδm1

i1
. . . δmk

ik

= αm1...mk

= 0.

Linear independence easily follows from that. ■

Corollary 1.1. dim(V1 ⊗ . . .⊗ Vk) =
k∏

j=1

nj.

1.2 Multilinear Maps and (p,q)-tensors

Hitherto, tensors are extremely abstract objects obtained by taking quotients of vector spaces. In the
case where all these spaces are finite-dimensional, the tensor product is actually isomorphic to “more
concrete” space, name the vector space of real-valued multilinear maps L(V1, . . . ,Vk;R).

Proposition 1.3. Let V1, . . . ,Vk be real vector spaces and for each 1 ⩽ j ⩽ k, let (e(j)1 , . . . , e
(j)
nj

) be an ordered
basis for the nj-dimensional vector space Vj. Denote the ordered dual basis for V∗

j as (e1(j), . . . , e
nj

(j)). The set

B∗ .
= {ei1(1) ⊗ . . .⊗ eik(k) : i1 ∈ [n1], . . . , ik ∈ [nk]}

is a basis for L(V1, . . . ,Vk;R).

Corollary 1.2. dimL(V1, . . . ,Vk;R) =
k∏

j=1

nj.

Proposition 1.4 (Tensors as Multilinear Maps). Let V1, . . . ,Vk be finite-dimensional real vector spaces. It
is true that

V∗
1 ⊗ . . .⊗ V∗

k ≃ L(V1, . . . ,VK;R). (1.1)

Proof. Let V1, . . . ,Vk be vector spaces as stated above. By corollaries 1.1 and 1.2, V1 ⊗ . . . ⊗ Vk and
L(V1, . . . ,Vk;R) are both finite-dimensional real vector spaces with the same dimension. Conse-
quently, they are isomorphic. ■

By virtue of the canonical isomorphism V∗∗
j ≃ Vj, proposition 1.4 also implies that

V1 ⊗ . . .⊗ Vk ≃ L(V∗
1 , . . . ,V

∗
k;R). (1.2)

We are now ready to talk what covariant, contravariant and mixed tensors are. These definitions
are extremely important in general relativity contexts, for they make it clear what kind of object we
are working with1.

Definition 1.2. Let p and q be non-negative integers and V be a real vector space. The (p,q)-tensor product
of V is defined as the tensor product

T (p,q)(V)
.
= V ⊗ . . .⊗ V︸ ︷︷ ︸

p times

⊗V∗ ⊗ . . .⊗ V∗︸ ︷︷ ︸
q times

.

An element of such tensor product is called a (p,q)-tensor or, alternatively, a rank (p,q) tensor.
1Besides, some objects, such the electromagnetic field tensor, may change how they look like if we work in terms of

covariant or contravariant components.
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1.2. Multilinear Maps and (p,q)-tensors

Covariant tensors are the (0,q)-tensors and contravariant tensors are the (p, 0)-tensors. We de-
note these tensor products respectively as

T (0,q)(V) = Tq(V∗),

T (p,0)(V) = Tp(V).

Since these tensors products can be reinterpreted as multilinear maps, we also have that

T (0,q)(V) ≃ L(V, . . . ,V︸ ︷︷ ︸
q times

;R),

T (p,0)(V) ≃ L(V∗, . . . ,V∗︸ ︷︷ ︸
p times

;R).

This means that covariant tensors eat vectors, while contravariant tensors eat covectors.

Definition 1.3. Let V be finite-dimensional real vector space. A rank k covariant tensor A ∈ Tk(V∗) is
symmetric if and only if for any v1, . . . , vk ∈ V :

A(v1, . . . , vi, . . . , vj, . . . , vk) = α(v1, . . . , vj, . . . , vi, . . . , vk)

whenever 1 ⩽ i < j ⩽ k.

The set of all symmetric, rank k, covariant tensors is a vector subspace of Tk(V∗).
Let Sk be the permutation group of {1, 2, . . . , k}. We can always turn a tensor A ∈ Tk(V∗) into a

symmetric one by virtue of the Symmetrization operator Sim : Tk(V∗) → Σk(V∗), which is defined
via:

Sym A
.
=

1

k!

∑
σ∈Sk

σA.

Proposition 1.5. Let V be a real vector space and A ∈ Tk(V∗). The following statements are equivalent:

a) A is symmetric.

b) For any v1, . . . , vk ∈ V , A(v1, . . . , vk) remains unaltered by any rearrangement of v1, . . . , vk.

c) In any basis for V , the components Ai1...ik remain unaltered by any rearrangement of their indices.

Exercise 1.1. Let V be a real vector space and A ∈ Tk(V∗). Then

a) Sym A is symmetric.

b) Sym A = A ⇐⇒ A ∈ Σk(V∗).

LetA ∈ Σk(V∗) and B ∈ Σl(V∗), there is no guarantee thatA⊗B ∈ T (k+l)(V∗) will be a symmetric
tensor too. However, by virtue of the operator Sym, we can define a so-called symmetric product,
which acts on A and B as:

AB
.
= Sym(A⊗ B).

This means that

αβ(v1, . . . , vk+l) =
1

(k+ l)!

∑
σ∈Sk+l

α(vσ(1), . . . , vσ(k)β(vσ(k+1), . . . , vσ(k+l)).

For example, if A and B are rank 1 covariant tensors (which are always symmetric), then

AB =
1

2
(A⊗ B+ B⊗A),

is a symmetric (0,2)-tensor.
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1.3. Antisymmetric Tensors

1.3 Antisymmetric Tensors

Just like we can define symmetric covariant tensors, we can define antisymmetric tensors. Such
tensors are somewhat special2 and deserve their own section in this appendix.

Definition 1.4. Let V be a finite-dimensional real vector space. A rank k covariant tensor A ∈ Tk(V∗) is
antisymmetric if and only if for any v1, . . . , vk ∈ V :

A(v1, . . . , vi, . . . , vj, . . . , vk) = −A(v1, . . . , vj, . . . , vi, . . . , vk),

whenever 1 ⩽ i < j ⩽ k.

These objects go under many other names: k-covectors, covectors or exterior forms, for example.
The set of all such tensors is denoted by Λk(V∗) and it is also a vector subspace of Tk(V∗).

Claim 1. Let V be a real vector space and A ∈ Tk(V∗). The following statements are equivalent:

a) A is antisymmetric.

b) For any v1, . . . , vk ∈ V and any element σ ∈ Sk:

A(vσ(1), . . . , vσ(k)) = (sgn σ)A(v1, . . . , vk),

with sgn σ .
= (−1)m, wherem is the number of transpositions obtained by decomposing σ.

c) In any basis for V , the components Ai1...ik change sign for any transposition of indices.

Furthermore, these are also equivalent:

a’) A is antisymmetric.

b’) A(v1, . . . , vk) = 0 if the k-uple (v1, . . . , vk) is linearly dependent.

c’) A(v1, . . . , vk) = 0 whenever two entries of (v1, . . . , vk) are equal.

The version of the Sym operator for antisymmetric tensors is the operator Antisym : Tk(V∗) →
Λk(V∗), named antisymmetrization, defined by:

Antisym A
.
=

1

k!

∑
σ∈Sk

(sgn σ)(σA).

Explicitly, this means that:

(Antisym A)(v1, . . . , vk) =
1

k!

∑
σ∈Sk

(sgn σ)A(vσ(1), . . . , vσ(k)).

Clearly, for A ∈ T (0,2)(V∗):

(Antisym A)(v,w) =
1

2
(A(v,w) −A(w, v)).

Exercise 1.2. Let V be a real vector space and A ∈ Tk(V∗). Then

a) Antisym A is antisymmetric.

b) Antisym A = A ⇐⇒ A ∈ Λk(V∗).

2They will help us define differential forms, which are the objects that one integrates on a manifold.
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1.3. Antisymmetric Tensors

Some Antisymmetric Tensors

A k multi-index is defined as a ordered k-uple (i1, . . . , ik) of positive integers. If σ ∈ Sk, define Iσ as

Iσ
.
= (iσ(1), . . . , iσ(k)).

Fix an ordered basis (e1, . . . , en) on V∗. For any k multi-index I, define the (0,k)-tensor εI as
follows:

εI(v1, . . . , vk)
.
= det

e
i1(v1) . . . ei1(vk)

...
. . .

...
eik(v1) . . . eik(vk)

 = det

v
i1
1 . . . vi1k
...

. . .
...

vik1 . . . vikk

 .

Clearly that is an antisymmetric tensor, let us call it an elementary alternating tensor.
For k multi-indices I e J a generalized Kronecker delta by setting

δIJ
.
= det

δ
i1
j1

. . . δi1jk
...

. . .
...

δikj1 . . . δikjk

 .

One can show that it satisfies

δIJ =

{
sgn σ, if neither I nor J have repeated indices and J = Iσ, σ ∈ Sk.

0, otherwhise.

A way do prove the property above is by rewriting the RHS of the definition of δIJ as:

δIJ =
∑
η∈Sk

(sgn η)δi1jη(1)
. . . δikjη(k)

.

Claim 2. Fix a basis {ei}ni=1 on V and let {ei}ni=1 be its dual basis. For any k multi-indices I and J:

a) If I has repeated indices, then εI = 0.

b) If J = Iσ for some σ ∈ Sk, then εI = (sgn σ)εJ.

c) For any k-uple of basis elements
εI(ej1 , . . . , ejk) = δ

I
J.

Proposition 1.6. Let V be a real vector space. If {ei}ni=1 is a basis for V∗, then for every positive integer
k ⩽ dimV = n, the set

E = {εI : i1 < . . . < ik}

is a basis for Λk(V∗) and

dimΛk(V∗) =

(
n

k

)
=

n!

k!(n− k)!
.

Proof.
Let k > n, then by statement b’ from claim 1, we have E = {0}, for any k-uple of vectors is linearly

dependent in this situation.
Now consider the case k ⩽ n. If A ∈ Λk(V∗) and I = (i1, . . . , ik), define

aI
.
= A(ei1 , . . . , eik).

Thus, for any other k multi-index J,∑
I

′
aIε

I(ej1 , . . . , ejk)
.
=

∑
{I: i1<...<ik}

aIε
I(ej1 , . . . , ejk) = aJ.
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1.3. Antisymmetric Tensors

This means that
∑′

I αIε
I = A, which implies Λk(V∗) = span E.

To verify linear independence, let βI be real numbers such that∑
I

′
βIε

I = 0.

Then for any increasing k multi-index J:∑
I

′
βIε

I(ej1 , . . . , ejk) = βJ = 0.

■

Proposition 1.7. Let V be an n-dimensional real vector space and A ∈ Λn(V∗). For any linear operator
T : V → V and any n-uple (v1, . . . , vn),

A(T(v1), . . . , T(vn)) = (det T)A(v1, . . . , vk).

This result is very similar to the change of coordinates formula for integrals. In fact, I believe it
generalises that formula, since the Jacobian matrix is a particular linear operator.

Proof.
Let {ei}ni=1 be a basis for V and {ei}ni=1 be its dual basis. Moreover, let (T ij ) be the matrix represen-

tation of the linear operator T in the basis {ei}. Due to multilinearity and antisymmetry of A, we just
have to check the equality holds in the case (v1, . . . , vn) = (e1, . . . , en).

By proposition 1.6, it follows that dimΛn(V∗) = 1. Therefore, A = aε1...n for some a ∈ R. Hence,
we can write the RHS above as:

(det T)aε1...n(e1, . . . , en) = a(det T).

On the other hand, the LHS can be written as:

aε1...n(T(E1), . . . , T(En)) = a det
(
εjT(Ei)

)
= a det T .

Since they both agree, the proof is essentially finished. ■

Exterior Product

If one wants to construct antisymmetric tensors of higher ranks starting from previous ones, one
could do something similar to the symmetric product of symmetric tensors: let ω ∈ Λk(V∗) and
η ∈ Λl(V∗), the exterior product of these antisymmetric tensors is the (k+ l)-covector defined as:

ω∧ η
.
=

(k+ l)!

k!l!
Antisym (ω⊗ η). (1.3)

The coefficients in front of Alt (ω∧ η) are justified by the following result:

Lemma 1.2. Let V be an n-dimensional real vector space and let {ei}ni=1 be a basis for V∗. For any multi-
indices I e J:

εI ∧ εJ = εIJ, (1.4)

for IJ .
= (i1, . . . , ik, j1, . . . , jl).

Proof.
Let {Ei}ni=1 be the basis for V dual to {ei}ni=1 and P = (p1, . . . ,pk+l). Due to multilinearity, it is

sufficient to check equation (1.4) in each case below.

Case I) If P has repeated indices, then Claim 1 implies that εI ∧ εJ(Ep1
, . . . ,Epk+l

) = 0 and
εIJ(Ep1

, . . . ,Epk+l
) = 0.
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1.3. Antisymmetric Tensors

Case II) If P has a index that does not appear in I or J, then

εI ∧ εJ(Ep1
, . . . ,Epk+l

)
.
=

(k+ l)!

k!l!
Antisym (εI ⊗ εJ)(Ep1

, . . . ,Epk+l
) = 0,

because P is neither a permutation of I nor J.

On the other hand, recall that Antisym(εIJ) is a linear combination of εσ(IJ), where σ is a
permutation of IJ. Each term of this sum evaluated at (Ep1

, . . . ,Epk+l
) yields a δσ(IJ)P , which is

zero because IJ ̸= P. Hence:
εIJ(Ep1

, . . . ,Epk+l
) = 0

too.

Case III) P = IJ and there are no repeated indices. Then εIJ(Ep1
, . . . ,Epk+l

) = 1. On the other
hand:

εI ∧ εJ(Ep1
, . . . ,Epk+l

) =

(k+ l)!

k!l!
Antisym (εI ⊗ εJ)(Ep1

, . . . ,Epk+l
) =

1

k!l!

∑
σ∈Sk+l

(sgn σ)εI(Epσ(1)
, . . . ,Epσ(k)

)εJ(Epσ(k+1)
, . . . ,Epσ(k+l)

) = 1.

Case IV) P = σ(IJ) for some σ ∈ Sk+l and there are no repeated indices. Then, we are in a case
equal to the previous one, up to a multiplication by sgnσ.

■

The exterior product has the following properties:

Claim 3 (Properties of exterior product). Suppose that ω, ω ′, η, η ′ and ξ are multicovectors on a vector
space V . Then

a) For any a,a ′ ∈ R:

(aω+ a ′ω ′)∧ η = a(ω∧ η) + a ′(ω ′ ∧ η)

η∧ (aω+ a ′ω ′) = a(η∧ω) + a ′(η∧ω).

b) ω∧ (η∧ ξ) = (ω∧ η)∧ ξ.

c) Ifω ∈ Λk(V∗) and η ∈ Λl(V∗) then

ω∧ η = (−1)klη∧ω.

d) Se {ei}ni=1 is a basis on V∗ and I is a k multi-index, then

εi1 ∧ . . .∧ εik = εI.

e) Ifω1, . . . ,ωk ∈ V∗ e v1, . . . , vk ∈ V , then

ω1 ∧ . . .∧ωk(v1, . . . , vk) = det
(
ωi(vj)

)
.

It is clear from the claim above that the vector space

Λ(V∗) =

n⊕
k=1

Λk(V∗).

is an associative, anticommutative algebra which we will name as the exterior algebra3.
3Also named a Grassmann algebra. The case when V = C is of utter importance for the construction of a classical theory

of fermionic fields.
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